skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bolt, Grace"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many Alaska communities rely on heating oil for heat and diesel fuel for electricity. For remote communities, fuel must be barged or flown in, leading to high costs. While renewable energy resources may be available, the variability of wind and solar energy limits the amount that can be used coincidentally without adequate storage. This study developed a decision-making method to evaluate beneficial matches between excess renewable generation and non-electric dispatchable loads, specifically heat loads such as space heating, water heating and treatment, and clothes drying in three partner communities. Hybrid Optimization Model for Multiple Electric Renewables (HOMER) Pro was used to model potential excess renewable generation based on current generation infrastructure, renewable resource data, and community load. The method then used these excess generation profiles to quantify how closely they align with modeled or actual heat loads, which have inherent thermal storage capacity. Of 236 possible combinations of solar and wind capacity investigated in the three communities, the best matches were seen between excess electricity from high-penetration wind generation and heat loads for clothes drying and space heating. The worst matches from this study were from low penetrations of solar (25% of peak load) with all heat loads. 
    more » « less